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Abstract
We present a theoretical approach to study the screening charge density ns(r) and the respective
stopping coefficient Q for hydrogen and helium at the low velocity limit. An electron gas, with
electronic density ne, is used to represent the conduction or valence electrons of the target
material. Solving numerically the Schrödinger radial equation, for a given potential V (r), the
phase shifts δl and the corresponding stopping coefficient Q are calculated as a function of ne.
The cusp condition and the Friedel sum rule are imposed on the charge density
n(r) = ns(r) + ne at the origin and to the phase shifts, respectively. The results are compared
with density functional calculations and with available experimental results.

The interaction of external charged particles with the free
electrons of a metal is a problem of relevance for numerous
studies dealing with impurities in solids, radiation effects
and materials analysis. In the last few decades, several
studies have been made using the method of density functional
theory (DFT), producing accurate results that serve as a point
of reference for related studies. Still, there is a need for
simplified methods that could be used in different alternative
studies (like several processes of interaction of slow ions with
solids, molecular dynamics codes, ion implantation, range
distributions, radiation effects and others) and could provide
fast and reliable results. A simplified method of calculation
has been proposed by Ferrell and Ritchie for slow He ions
in a free-electron gas [1], using a parameterized interaction
potential which was adjusted to satisfy the Friedel sum rule.
This method was further applied in [2, 3] to protons and
heavier ions, respectively. The method was also extended
by Apagyi and Nagy [4] to take into account the additional
restriction imposed by the Kato cusp condition. This approach
yields fairly good values of the stopping coefficient Q in
comparison with those obtained using the DFT formalism [5]
(with differences of about 5–10%). However, the differences
in the values of the induced density on the impurity ns(0) with
those obtained by more exact calculations [6–8] are very large.

One remarkable aspect of the DFT is that the quantum
mechanical problem of determining the equilibrium state of a
many-body system may be solved if the ground state density
of the electrons is found. In this work we study a method
to calculate the most representative terms that characterize
the interaction of an external charge with a free-electron gas

(FEG), taking as the input variable a given screening density
function ns(r), together with the corresponding screening
potential Vs(r). The appropriate form of Vs(r) is searched on
the basis of physical criteria and taking into account two main
conditions imposed by the Friedel sum rule [9] and the Kato
cusp condition [10]. The objective of this study is to provide
a simplified screening potential Vs(r) and associated screening
density ns(r) which could reproduce with accuracy the relevant
values of the stopping coefficient Q, screening density at the
origin ns(0) and the value of the main phase shift δ0, in close
agreement with the DFT values [5]. Additionally, we also
compare the results with experimental results for the stopping
coefficient Q. The valence and conduction electrons of the
material are represented as an electron gas characterized by its
mean electronic density ne and, alternatively, as a nonuniform
gas with density ne(r).

The calculation method applied here is the following. The
screening density around an impurity ion is represented in
terms of analytical functions fi (bir) in the form

ns(r) ≡
n∑

i

ai fi (bir), (1)

with appropriate coefficients ai , where
∑

i ai = Z and with∫ ∞
0 fi (bir)4πr 2 dr = 1. In the following, atomic units will be

used.
As a first condition, we require that the total density, given

by n(r) ≡ ns(r) + ne, shall satisfy the Kato cusp relation:

n′(0)

n(0)
= −2Z (2)
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which provides a mathematical constraint on the density
function ns(r).

The generated electrostatic potential Vs(r) is found by
solving

Vs(r) = 1

r

∫ r

0
ns(r

′)4πr ′2 dr ′ +
∫ ∞

r

ns(r ′)
r ′ 4πr ′2 dr ′ (3)

and the total scattering potential is

V (r) = − Z

r
+ Vs(r). (4)

Then, we consider the scattering of free electrons on this
potential and numerically solve the corresponding Schrödinger
equation. In this way we can determine the values of the phase
shifts δl(ve), where ve is the electron speed.

The second relevant condition is provided by the Friedel
sum rule, namely

Z = 2

π

∞∑

l=0

(2l + 1)δl(vF), (5)

which imposes a mathematical condition on the values of the
phase shifts at the Fermi velocity vF.

Using the phase shift values so obtained we calculate the
transport cross section σtr by

σtr = 4π

v2
F

∞∑

l=0

(l + 1) sin2[δl(vF) − δl+1(vF)], (6)

and finally we determine the stopping coefficient Q using the
relation [1, 11, 12]

Q ≡ −1

v

dE

dx
= nemvFσtr. (7)

In a simplified approach, the problem of an H+ ion in
jellium can be treated in a straightforward way assuming that
the screening density has an exponential dependence on the
distance r , namely ns(r) = (1/8π)b3e−br [2] (that is, n = 1,
a1 = 1 and b1 = b in equation (1)). The potential generated
by this screening charge (equation (3)) is then

Vs(r) = 1

r
− 1

r
e−br

(
1 + 1

2
br

)
. (8)

The potential given by equation (8) is similar to that of
the 1s hydrogenic state but the screening parameter b is now
a function of the electronic density (to satisfy the Friedel sum
rule). Notice that the approach in this case contains a single
variational parameter b and so the calculation ends up when the
value chosen for b leads to phase shift values δl(vF) that satisfy
equation (5). There is no room in this simplified approach for
taking into account the Kato cusp condition which deals with
the values of the screening density near the impurity ion.

In order to extend and improve the agreement with more
refined theoretical (DFT) values, we extend the analysis to the
case where the density function in equation (1) contains three
terms. The first two terms f1,2 in equation (1) are screening
charges of the same kind as the 1s and 2s hydrogenic states,

with parameters b1 and b2, respectively. Hence, the density
function takes the form

ns(r) = a1
b3

1

8π
e−b1r + a2

b3
2

32π
(2 − b2r)2e−b2r + a3 f3(r). (9)

The third function f3 in this equation was chosen after
extensive numerical study with different trial functions. From
this analysis we found that very good results could be obtained
using one of the simplest trial forms:

f3(r) ≡ b5
3

96π
r 2e−b3r . (10)

The potential Vs, calculated using equation (3), becomes
now

Vs(r) = 1

r

(
Z −

3∑

i

ai pi(r)e−bi r

)
, (11)

where

p1(r) = 1 + b1

2
r, (12)

p2(r) = (b2r)3

8
+ (b2r)2

4
+ 3b2r

4
+ 1 (13)

and

p3(r) = (b3r)3

24
+ (b3r)2

4
+ 3b3r

4
+ 1. (14)

Hence, the potential V (r) in equation (4) becomes

V (r) = −1

r

3∑

i

ai pi(r)e−bi r . (15)

It should be noted that the self-consistent potential used
in the DFT formulation contains the exchange and correlation
term, which we do not consider specifically here. Hence, the
functions used here, equations (9) and (15), may be regarded
as effective densities and potentials that serve to approximate
the DFT results.

Using the cusp condition of equation (2) for n(r) we find
a relation between coefficients:

a1 = (Z − a3)(Z − b2)b3
2 + 8Zπne

(Z − b2)b3
2 − (

Z − b1
2

)
b3

1

, (16)

where ne is the normal density of the jellium in the absence of
the impurity ion.

The numerical studies covered initially a wide range of
parameters, but after many tests we found that the region of
values with b2 = b1 produced very good general agreement
with the theoretical DFT results. The values of the terms ai

are constrained by the condition
∑

i ai = Z and by the Kato
condition of equation (16), so that only one of the ai may be
considered as a free parameter. Hence, we considered a fine
mesh of trial values of b3 and a3 around the optimal region
and adjusted the value of b1 until (a) the Friedel sum rule is
satisfied and (b) the values of ns(0), δ0(vF) and δ1(vF) are in
close agreement with the results of DFT.

The values of the parameters obtained from this
adjustment are contained in tables 1 and 2, for H and He,
respectively. The electron gas density ne is here represented
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Table 1. Result for hydrogen.

rs b1 = b2 b3 a1 a3 ns(0) ns(0)DFT δ0 δDFT
0 δ1 δDFT

1 Q QDFT

5.5 1.064 0.801 0.790 −6.032 0.337 0.336 1.811 1.812 −0.080 −0.097 0.047 0.049
5 1.071 0.822 0.857 −6.012 0.343 0.343 1.753 1.756 −0.061 −0.074 0.059 0.059
4 1.074 0.836 0.863 −6.288 0.360 0.360 1.598 1.599 −0.009 −0.017 0.098 0.098
3 1.072 0.826 0.744 −7.044 0.395 0.395 1.329 1.369 0.080 0.053 0.163 0.163
2 2.076 5.437 1.358 −0.388 0.494 0.495 1.049 1.049 0.138 0.124 0.255 0.258
1.5 2.230 5.371 1.466 −0.460 0.644 0.629 0.857 0.852 0.162 0.150 0.310 0.310

Table 2. Result for helium.

rs b1 = b2 b3 a1 a3 ns(0) ns(0)DFT δ0 δDFT
0 δ1 δDFT

1 Q QDFT

5.5 2.378 2.351 2.108 −4.644 3.554 3.556 2.778 2.787 0.114 0.120 0.012 0.012
5 2.583 2.865 2.466 −3.473 3.560 3.562 2.724 2.735 0.129 0.133 0.019 0.019
4 2.703 3.605 2.840 −2.556 3.580 3.581 2.597 2.592 0.171 0.168 0.047 0.047
3 2.854 4.475 2.333 −1.920 3.627 3.627 2.391 2.365 0.228 0.217 0.135 0.135
2 3.076 6.905 2.258 −1.275 3.791 3.781 2.082 1.982 0.295 0.279 0.427 0.427
1.5 3.086 4.634 2.352 −1.453 4.038 4.032 1.634 1.689 0.350 0.309 0.754 0.754

by the usual rs parameter, being (4π/3)r 3
s ne = 1. We also

include in these tables the values of the friction coefficient
Q and of the screening charge density on the impurity ns(0),
and compare these values with those obtained from the DFT
calculations1. As may be observed in these tables, the results
show excellent agreement with those obtained from the DFT,
both for hydrogen and helium, and for the range of rs values
of interest for metallic elements. We note that the negative
values of a3 indicate the need for an antiscreening term (to
compensate for some overscreening produced by the two other
terms in equation (9)).

Before comparing the values of the stopping coefficient
with experimental results, one should give some consideration
to the fact that the model of a uniform electron gas applied
before may not be quite realistic to simulate the conditions
in solid targets. Previous authors [13, 14] have considered
the use of the local density approximation (LDA), which is
based on the ansatz that a nonuniform electron distribution
may be modeled using the results obtained for a uniform
electron gas followed by an appropriate average with the real
electron density inside the solid [15, 16]. Following this
line of approach we have performed two types of atomic
averaging. The first one considers the full average of the
stopping coefficient on the atomic cell in the solid, given by

Qav1 = 1

V0

∫ rmax

0
Q[r ]4πr 2 dr, (17)

where rmax is the radius of one atomic cell in the solid and V0 =
4πr 3

max/3 is its corresponding atomic volume. The quantity
Q[r ] here corresponds to the value of the stopping coefficient
calculated as in equation (7) for the local value of the electron
density in the cell ne(r). To perform this calculation we have
used previous calculations of electron densities from [17, 18].

One of the shortcomings of the previous approach is
the fact that it includes in the integration all the atomic
electrons within a free-electron gas approximation, without

1 E Zaremba (Queen’s University, Canada) supplied the computational code
for the DFT calculations showed in the tables and in the graphs.

Figure 1. The coefficient Q, for protons, as a function of the density
of the electron gas ne (with rs in the upper scale). The solid line
shows the present theoretical result for a homogeneous FEG system.
The calculations of Qav1 and Qav2 are indicated by solid (LDA-1)
and open (LDA-2) circles, respectively. The filled squares show the
DFT values1. The other symbols show the experimental values
obtained at low velocities.

consideration of the important binding effects that will tend
to cancel the contribution of inner shells to the stopping in the
case of slow ions. To quantify this effect in a simplified but
effective way, we restrict the integration to the outer region of
the electronic cloud, in the form

Qav2 = 1

Vc

∫ rmax

rc

Q[r ]4πr 2 dr, (18)

where rc is numerically determined by the condition that the
number of outer electrons (in the range rc < r < rmax) agrees
with the number of valence or conduction electrons per atom
in the solid.

The comparison of these calculations with experimental
results of the stopping coefficients is illustrated in figures 1
and 2, for H and He, respectively. The calculated stopping
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Figure 2. The coefficient Q, for He ions, as a function of the density
of the electron gas ne (with rs in the upper scale). The solid line
shows the present theoretical result for a homogeneous FEG system.
The calculations of Qav1 and Qav2 are indicated by solid (LDA-1) and
open (LDA-2) circles, respectively. The filled squares show the DFT
values1. The other symbols show the experimental values obtained at
low velocities. The dashed line shows the theoretical result of [26].

values are represented here as a function of the FEG density
ne (lower scale) and the equivalent rs parameter (upper scale).
The solid lines show the values of Q for a homogeneous
free-electron gas (HFEG) of density ne obtained with the
present theoretical approach, equation (7). In these figures
we show the experimental results for H+ [19–25] in Rb, Ca,
Mg, Pb, Sn, Bi, Al, Sb, Zn, Cu, Ag, C and Au and for
He+ [26, 20, 27, 24] in Rb, Sr, Ca, Mg, Pb, Sn, Bi, Al, Ge,
Zn, Ag, C and Au in increasing order of FEG density. We also
show here the experimental stopping value for channeling in
Au from [28, 29].

To represent the experimental results on the FEG density
scale here, we have considered for each solid its experimental
plasmon frequency ωP and assigned the corresponding
position on this plot using the effective density that
corresponds to the plasmon frequency measurements [30]2,
namely n = ω2

P/4π . In the case of channeling we use the
mean value of the density in the center of the channel. The
calculations of Qav according to equations (17) and (18) for
Rb, Ca, Mg, Al, C, Ag and Au are indicated by solid and open
circles, respectively.

The results obtained from the present approach (solid
lines) coincide almost exactly with those of the DFT obtained
from1. We note that, according to [5], the value for Z =
1, rs = 2, was not obtained in a self-consistent way but
was interpolated from other rs. For this reason the DFT
values included in tables 1 and 2 are those obtained from
Zaremba’s code1. It should be mentioned also that the results
obtained with this program for all other rs values were in close
agreement with those in [5]. As may be observed, the lines
corresponding to this calculation (and also to the DFT values)

2 In the case of Ag and Au the rs values were calculated by an average in the
same way as for Qav2.

describe the general behavior of the experimental data in the
region of medium and high densities, where the lines goes
through the cloud of points. For hydrogen, the calculated
stopping coefficient Q is in relatively good agreement with
the experiments, while for helium the numerical agreement
is poor and only the general trend of the data is reproduced.
For the range of densities larger than ∼0.03 (a.u.) the
calculated curve follows the experimental tendency and both
are in fair agreement, although the individual deviations of the
experimental points are significant. For densities lower than
∼0.03 (a.u.) the calculated values are too small compared
with the experiments, and we find a large disagreement at
low densities, particularly in the case of Rb (with rs = 5.45
and ne = 0.001 47). A more specific quantitative study of
differences between DFT and experiments for H and He in
various metals was made in [20].

To estimate the possible effects produced by the density
inhomogeneities in real solids we made use of the local density
approximation (LDA) and performed the calculations indicated
by equations (17) (unrestricted, LDA-1) and (18) (restricted,
LDA-2). The corresponding results are indicated by solid and
open circles in these figures. The quality of the improvement
obtained by this method is, however, not the same in all
cases; for instance, in the case of Rb we find a very good
agreement using LDA-2 for hydrogen, but a better agreement
using LDA-1 for helium. In addition to these calculations
we have included in figure 2 by a dashed line, for the range
of high rs, the calculation of [26] using a phase shift sum
rule for the amplitude of the dipolar backflow current. The
agreement with the experimental values of that [26] in this
case is good. However, we found that if the same approach is
used for hydrogen the results show a large disagreement with
the experiments. Therefore, we consider that there is a more
basic problem still unsolved in the description of the interaction
between external impurities and an FEG in the range of large rs.
This indicates also a point of interest for further investigation
concerning the description of inhomogeneous electron gas
interactions in high-rs metals.

The comparison with experiments is not satisfactory
in quantitative terms, although the general behavior is
qualitatively represented. We point out the need for
additional experimental and theoretical research of the
observed differences, particularly in the case of metals with
high rs values, where the discrepancy between the previously
mentioned sum rules should be investigated. In summary,
we have studied a simple formulation of the screening of
light ions in a free-electron gas, using a hydrogenic type of
density function with adjustable parameters. The parameters
are adjusted to satisfy the Friedel sum rule and the Kato cusp
condition. We find a convenient framework that describes
with excellent accuracy the values of the density at the origin,
the stopping coefficient and the main phase shift values, as
compared with density functional calculations.
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